Technology Blogs by SAP
Learn how to extend and personalize SAP applications. Follow the SAP technology blog for insights into SAP BTP, ABAP, SAP Analytics Cloud, SAP HANA, and more.
Showing results for 
Search instead for 
Did you mean: 
Product and Topic Expert
Product and Topic Expert

I am excited to share that SAP HANA Cloud is planned to include a vector engine as part of the Q1 2024 release.

Click here for the official SAP TechEd announcement.

Intelligent data applications are now the standard for business applications. Users no longer desire applications that require repetition of tasks within a business process. Instead, users need applications that replace the mundane with data-driven expertise for decisions made in the moment.

The addition of a vector engine will create many new intuitive possibilities for customers, partners, and even internal engineering teams. Some of the most popular use cases include ...

    • Similarity Search: find similar items, documents, or records by comparing their embeddings
    • Content Based Filtering: recommend items to users based on their past interactions or preferences
    • Information Retrieval: improve the relevance of search results by using text embeddings
    • Generative AI: support Retrieval Augmented Generation (RAG) to obtain better results from large language models

SAP HANA Cloud is the best choice when selecting a cloud database to power these new applications. The upcoming vector engine will enable builders to deliver at every layer of the application's architecture, including the ...

    • Storage Layer: unify all types of data while eliminating data silos and duplicate copies of data
    • Logic Layer: combine similarity search results and business logic within the same database
    • User Interface Layer: power natural human-like interaction for a more intuitive experience

Regarding the technical details, vectors will be stored within a table using a field of type REAL_VECTOR. The first release will also include the two vector search functions: cosine similarity and Euclidean distance. Cosine similarity finds the closest vector(s) using angles. Euclidean distance (or l2distance) determines the closest vector(s) by calculating the actual distance. See below for SQL syntax examples.

There are significant technical advantages when all types of data are utilized, whether physically or virtually, inside a single database. One notable benefit is the increased efficiency of a unifying SELECT statement. See below for a SQL example that uses SAP HANA Cloud’s multi-model engines.

When I think about a heterogenous SELECT statement that combines transactional, graph, spatial, and vector, I am reminded of a mentor’s wisdom, "make powerful statements and expect great results." Now is the time to start architecting AI-driven applications that elevate the user’s performance as well as the business process. Begin planning today for SAP HANA Cloud’s new vector engine and to implement these types of use cases in your next project. In 2024, expect more from the database and solve those reoccurring business application challenges.

Recommended Links

Vectorize your Data : SAP HANA Cloud's Vector Engine for Unified Data Excellence

SAP HANA Cloud Vector Announcement


Intelligent Data Applications

SAP HANA Cloud Guided Experience

SAP HANA Cloud Community