Technology Blogs by SAP
Learn how to extend and personalize SAP applications. Follow the SAP technology blog for insights into SAP BTP, ABAP, SAP Analytics Cloud, SAP HANA, and more.
Showing results for 
Search instead for 
Did you mean: 
Part 1 of 5 in the What Is Data Intelligence blog series.

If at first you don’t succeed…

Artificial Intelligence has struggled to live up to the hype of recent years.

If you were to believe the buzz, AI would be responsible for automagically solving all our biggest problems with complex computer wizardry and granting all of us a life of leisure and simplicity. It reminds me of the Hitchhiker’s Guide to the Galaxy, in which hyper-intelligent beings design a computer to reveal the answer to the meaning of life, the universe, and everything–only to find out that the answer is 42, and they never knew what the original question was anyways.

At the same time, Information Management approaches have failed to keep pace with technological change. Most of this technology was built and designed for the days of on-premise applications that wrote to on-premise databases, where the goal was to extract data and load it into a data warehouse for BI and reporting. While that need still exists, the data that we manage and the ways we extract value from that data have all radically shifted and diversified.

We are left with a complex mix of structured, unstructured, and object store data residing in a blend of cloud and on-premise systems, with access often being limited or non-standardized via APIs. The result is a complicated landscape of data sprawl, tooling diversification, and data siloes. All of this leads to an increasing inability to “locate the wisdom we have lost in knowledge” and the “knowledge we have lost in information” (all credit where it is due to TS Elliott).

Where Traditional AI and Information Management Fail

The combination of this failure of AI and Information Management can be seen in a few data points:

  • 86% of enterprises claim that they are not getting the most out of their data

  • 5 out of 10 early data science initiatives fail to get to production

  • 74% say their data landscape is so complex that it limits agility

And perhaps most telling: 2/3rds of businesses consider machine learning and AI important business initiatives but only 1/3 or less are confident in their ability to implement them.

Unlocking the Promise of Enterprise AI

This is why we have developed an entirely new solution from the ground up, with open source and cloud principles in mind, to ask how you tackle these challenges in order to unlock the true promise of Enterprise AI and achieve Data Intelligence. Data Intelligence is what happens when you bring together both halves of the equation: managing your data wherever (and whatever) it is, and then extracting value from that data using the latest tools and techniques.

Learn More


1 Comment