Technology Blogs by Members
Explore a vibrant mix of technical expertise, industry insights, and tech buzz in member blogs covering SAP products, technology, and events. Get in the mix!
cancel
Showing results for 
Search instead for 
Did you mean: 
architectSAP
Active Contributor
1,410
In this blog post I leverage the Iris flower data set provided by scikit-learn that contains three classes of fifty instances each, where each class refers to a type of iris plant:
from sklearn.datasets import load_iris
df = load_iris()
df.target_names

array(['setosa', 'versicolor', 'virginica'], dtype='<U10')

One class (setosa) is linearly separable from the other two, but the latter are not linearly separable from each other:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
x = df.data
y_true = df.target
ax = Axes3D(plt.figure())
ax.scatter(x[:, 2], x[:, 1], x[:, 0], c=y_true)
ax.set_xlabel(df.feature_names[2])
ax.set_ylabel(df.feature_names[1])
ax.set_zlabel(df.feature_names[0])


To start with, I prepare my data set for TensorFlow:
import tensorflow as tf
dataset = tf.data.Dataset.from_tensor_slices((x, y_true))
dataset = dataset.batch(1)
for feat, targ in dataset.take(5):
print('Features: {}, Target: {}'.format(feat, targ))
print(x.shape)
print(y_true.shape)

Features: [[5.1 3.5 1.4 0.2]], Target: [0]
Features: [[4.9 3. 1.4 0.2]], Target: [0]
Features: [[4.7 3.2 1.3 0.2]], Target: [0]
Features: [[4.6 3.1 1.5 0.2]], Target: [0]
Features: [[5. 3.6 1.4 0.2]], Target: [0]
(150, 4)
(150,)

Then I build, compile and train my model with ReLU activation to add non-linearity:
model = tf.keras.Sequential([tf.keras.layers.Dense(8, activation=tf.nn.relu, input_shape=(4,)), tf.keras.layers.Dense(8, activation=tf.nn.relu), tf.keras.layers.Dense(3)])
model.compile(tf.keras.optimizers.SGD(), tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.summary()
history = model.fit(dataset, epochs=64)

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense_9 (Dense) (None, 😎 40
_________________________________________________________________
dense_10 (Dense) (None, 😎 72
_________________________________________________________________
dense_11 (Dense) (None, 3) 27
=================================================================
Total params: 139
Trainable params: 139
Non-trainable params: 0
_________________________________________________________________
Epoch 1/64
150/150 [==============================] - 0s 2ms/step - loss: 0.1592
Epoch 2/64
150/150 [==============================] - 0s 3ms/step - loss: 0.1407
...
Epoch 63/64
150/150 [==============================] - 0s 2ms/step - loss: 0.0209
Epoch 64/64
150/150 [==============================] - 0s 2ms/step - loss: 0.0436

With that I check its accuracy. I expect fifty zeros followed by 50 ones and fifty twos, so not too bad really:
tf.argmax(model(x), axis=1)

<tf.Tensor: shape=(150,), dtype=int64, numpy=
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1,
1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])>

Let's try a prediction in the critical area between versicolor and virginica then:
df.target_names[tf.argmax(model.predict([[6, 3, 4, 1]])[0], axis=0).numpy()]

'versicolor'

For leveraging these results, in the SAP Data Intelligence ML Scenario Manager, I add a Python Producer to create, compile, train and store my model. Since I do not need an input file but a Docker image with the scikit-learn and TensorFlow Python libraries, I replace the default Python 3 operator with a custom operator that only got the required output Ports and Tag for my Docker image:



Here is the full code for my custom operator:
from sklearn.datasets import load_iris
import tensorflow as tf
import json
import h5py

# Example Python script to perform training on input data & generate Metrics & Model Blob
def gen():
# to send metrics to the Submit Metrics operator, create a Python dictionary of key-value pairs
df = load_iris()
x = df.data
y_true = df.target
dataset = tf.data.Dataset.from_tensor_slices((x, y_true))
dataset = dataset.batch(1)
model = tf.keras.Sequential([tf.keras.layers.Dense(8, activation=tf.nn.relu, input_shape=(4,)), tf.keras.layers.Dense(8, activation=tf.nn.relu), tf.keras.layers.Dense(3)])
model.compile(tf.keras.optimizers.SGD(), tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
history = model.fit(dataset, epochs=64)
# metrics_dict = {"kpi1": "1"}
metrics_dict = json.dumps({'loss': str(history.history['loss'][len(history.history['loss']) - 1])})

# send the metrics to the output port - Submit Metrics operator will use this to persist the metrics
api.send("metrics", api.Message(metrics_dict))

# create & send the model blob to the output port - Artifact Producer operator will use this to persist the model and create an artifact ID
f = h5py.File('blob', driver='core', backing_store=False)
model.save(f)
f.flush()
# model_blob = bytes("example", 'utf-8')
model_blob = f.id.get_file_image()
api.send("modelBlob", model_blob)

api.add_generator(gen)

That requires this Docker image:
FROM $com.sap.sles.ml.python
RUN python3.6 -m pip --no-cache-dir install --user --upgrade pip
RUN python3.6 -m pip --no-cache-dir install --user sklearn tensorflow

Executing my modified Python Producer provides me with my Metrics, Models and Datasets:


To consume these, in the SAP Data Intelligence ML Scenario Manager, I add a Python Consumer and add the following code:
# apply your model
blob = io.BytesIO(model)
f = h5py.File(blob, 'r')
architectSAP = tf.keras.models.load_model(f)
blob.close()
# obtain your results
prediction = architectSAP.predict([json.loads(user_data)['iris']])
success = True

# apply carried out successfully, send a response to the user
# msg.body = json.dumps({'Results': 'Model applied to input data successfully.'})
df = load_iris()
msg.body = json.dumps({'iris': df.target_names[tf.argmax(prediction[0], axis=0).numpy()]})

Since this also requires the scikit-learn and TensorFlow Python libraries, I add a Group with the Tag for my Docker image:


Deploying this provides me with an URL that I can use to retrieve my prediction e.g. with Postman:


I hope this example is complex enough to make sense for a machine learning scenario but still simple enough for you to now understand how to bild a SAP Data Intelligence ML Scenario with TensorFlow.
1 Comment
Labels in this area