
Just a side note – You will need to log a ticket to activate custom applications
on SAP Data Intelligence Cloud. I recently tried and found a bunch of errors when trying to active one. Please log ticket under CA-DI-OPS or CA-DI.
admin
permissions on the SAP DI tenant to install the application and create custom policies.Jupyter Notebooks
you will need a user that has access to ML Scenario Manager
and TensorBoard App
user@home ~ % mkdir -p custom_tensorboard_solution/content/vsystem/{apps,icons}
manifest.json
:user@home ~ % cd custom_tensorboard_solution
user@home ~ % cat << EOF > manifest.json
{
"name": "tensorboard-app",
"version": "0.0.2",
"format": "2",
"dependencies": []
}
EOF
user@home ~ % touch content/vsystem/apps/tensorboard-app.json
user@home ~ % curl https://tensorboard.dev/static/tb_sharing_2.png -o \
content/vsystem/icons/TensorBoard.png
user@home ~ % tree .
.
├── content
│ └── vsystem
│ ├── apps
│ │ └── tensorboard-app.json
│ └── icons
│ └── TensorBoard.png
└── manifest.json
4 directories, 3 files
user@home ~ % zip -r tensorboard-app.zip manifest.json content/
user@home ~ % vctl solution bundle custom_tensorboard_solution/
tensorboard-app.zip
created in the previous step.tenant administrator
on your SAP Data Intelligence tenant.System Management
application.Tenant
, select Solutions
, and click +
.tensorboard-app.zip
file in the file dialog and confirm.Strategies
section and click Edit Pencil
.tensorboard-app
to the strategy and click save.TensorBoard
application will now show up in the launchpad of all users who have rights to start any application.tenant administrator
on your SAP DI tenant.Policy Management
application.+
.custom.tensorboard.start
as the Policy Id
and deselect the Exposed
option. Add a new resource by clicking +
and enter the app name tensorboard-app
, click Okay
and then Create
.custom.developer
as the Policy Id
, add the policy created in step 4 and click Create
.System Management
application.Users
, create a new user or select an existing user.+
and select the role created in step 6 and click Assign
.The user will now have access to start an instance of the TensorBoard application
ML User
on your SAP Data Intelligence tenant.ML Scenario Manager
application.Create
, enter TensorBoard Sample
in name
and click Create
.Create
. In the dialog window, enter TensorBoard Test
in name
and click Create
.pip install tensorflow==1.15
in the terminal and pressing enter
.TensorBoard Test
run each cell and click save icon
.# Import TensorFlow and show version
import tensorflow as tf
tf.__version__
import numpy as np
X_train = (np.random.sample((10000,5)))
y_train = (np.random.sample((10000,1)))
X_train.shape
feature_columns = [
tf.feature_column.numeric_column('x', shape=X_train.shape[1:])]
DNN_reg = tf.estimator.DNNRegressor(feature_columns=feature_columns,
# Indicate where to store the log file
model_dir='/vhome/tf/train/linreg',
hidden_units=[500, 300],
optimizer=tf.train.ProximalAdagradOptimizer(
learning_rate=0.1,
l1_regularization_strength=0.001
)
)
# Train the estimator
train_input = tf.estimator.inputs.numpy_input_fn(
x={"x": X_train},
y=y_train, shuffle=False,num_epochs=None)
DNN_reg.train(train_input,steps=3000)
You must be a registered user to add a comment. If you've already registered, sign in. Otherwise, register and sign in.
User | Count |
---|---|
16 | |
12 | |
9 | |
9 | |
9 | |
8 | |
8 | |
8 | |
8 | |
7 |