Artificial Intelligence and Machine Learning Blogs
Explore AI and ML blogs. Discover use cases, advancements, and the transformative potential of AI for businesses. Stay informed of trends and applications.
cancel
Showing results for 
Search instead for 
Did you mean: 
Former Member
14,544

You want to know how to actually start using SAP Leonardo Machine Learning? The Machine Learning foundation offers a wide range of functional services, from image to text classification that are easy to consume. You can find a first overview of all these services available on the SAP API Business Hub and try them out through APIs calls. The only prerequisites you will need are the SAP Cloud Platform Tools for Java in your Eclipse IDE, SAP Cloud Platform Software  Development Kit, Eclipse (they can be set up and configured with this tutorial).


 

Steps

1. Open Eclipse and create new project

  • Select „File“ menu > „New“ in drop-down > „Dynamic Web Project“ in drop-down.


 



2. Start the project

  • Set project name to “MLConsumption” and choose "Finish".
    Check that Target Runtime is set to “Java Web Tomcat 8” (or “Java Web Tomcat 7”).


3. Create new Servlet

  • Right click on project and select “New” in drop-down > “Servlet”.


4. Set class name

  • Set Java packages to “mlconsumption" and the Class name to “MLConsumptionServlet”.
    Click on “Next”.


5. Set URL Mapping

  • Click on “MLConsumptionServlet” > "Edit". Set Pattern to “/”. Choose “OK" and on “Finish”.


6. Paste code into Eclipse

  • Replace code in method doGet (line 29 and 30) with
        	// create a new URLConnection object to configure our HTTP request
    URLConnection connection = new URL("https://sandbox.api.sap.com/ml/prodimgclassifier/inference_sync").openConnection();
    connection.setDoOutput(true); // send data through this connection --> HTTP POST request

    // user authentication and authorization
    connection.setRequestProperty("APIKey", "<API_KEY>");

    // random boundary between different files of multipart/form-data request
    String boundary = Long.toHexString(System.currentTimeMillis());
    // line separator required by multipart/form-data format
    String CRLF = "\r\n";
    // for sending files we need multipart/form-data
    connection.setRequestProperty("Content-Type", "multipart/form-data; boundary=" + boundary);

    // character encoding used in our http requests
    String charset = java.nio.charset.StandardCharsets.UTF_8.name();
    // the image file we want to classify
    String path = "";

    OutputStream output = connection.getOutputStream();
    PrintWriter writer = new PrintWriter(new OutputStreamWriter(output, charset), true);
    ) {
    // send image file
    writer.append("--" + boundary).append(CRLF);
    writer.append("Content-Disposition: form-data; name=\"files\"; filename=\"" + imgFile.getName() + "\"").append(CRLF);
    writer.append("Content-Type: " + URLConnection.guessContentTypeFromName(imgFile.getName())).append(CRLF);
    writer.append("Content-Transfer-Encoding: binary").append(CRLF);
    writer.append(CRLF).flush();

    Files.copy(imgFile.toPath(), output);
    output.flush(); // need to flush before continuing with writer
    writer.append(CRLF);

    // mark end of multipart/form-data
    writer.append("--" + boundary + "--").append(CRLF).flush();
    }

    // performing the http request against the Leonardo ML service endpoint
    InputStream mlServiceResponse = connection.getInputStream();

    try (Scanner scanner = new Scanner(mlServiceResponse)) {
    // reading the response from the Leonardo ML service endpoint
    String responseBody = scanner.useDelimiter("\\A").next();
    // sending a response to the client
    userResp.getWriter().println(responseBody);
    }



 

7.  Add missing imports

  • Insert the following code below line 8:
    import java.net.URISyntaxException;
    import java.net.URL;
    import java.net.URLConnection;
    import java.io.File;
    import java.io.InputStream;
    import java.io.OutputStream;
    import java.io.PrintWriter;
    import java.io.OutputStreamWriter;
    import java.util.Scanner;
    import java.nio.file.Files;

     


8. Login to API Business Hub

  • Open API Business Hub in your browser and choose "APIs". Click on “Login” (alternatively click “Register” and follow registration wizard). 


9. Select Product Image Classification

  • Search for “SAP Leonardo Machine Learning”. Select “SAP Leonardo Machine Learning -Functional Services” and click on “Artifacts” >  “Product Image Classification API”.


10. Generate API Key

  • Switch back to Browser, click on key icon and “Copy API Key”.


11. Insert API Key

  • Return to Eclipse and select <API_KEY> in line 40, then Press [CTRL]+[c].


12. Add product image to the project

  • Download “smartphone.jpg” and drop image into the “mlconsumption” package.




(Source)

 

13. Deploy and Execute Project
19 Comments
Labels in this area