Application Development Discussions
Join the discussions or start your own on all things application development, including tools and APIs, programming models, and keeping your skills sharp.
cancel
Showing results for 
Search instead for 
Did you mean: 

Need information about Internal Tables

Former Member
0 Kudos
155

Hi Every one!

I Need some information about Internal tables. Pls help be above the same.

Thanks & with Regards,

Chandra.

1 ACCEPTED SOLUTION

Former Member
0 Kudos
100

Hi..,

<b>

Internal tables </b>

Internal tables provide a means of taking data from a fixed structure and storing it in working memory in ABAP. The data is stored line by line in memory, and each line has the same structure. In ABAP, internal tables fulfill the function of arrays. Since they are dynamic data objects, they save the programmer the task of dynamic memory management in his or her programs. You should use internal tables whenever you want to process a dataset with a fixed structure within a program. A particularly important use for internal tables is for storing and formatting data from a database table within a program. They are also a good way of including very complicated data structures in an ABAP program.

Like all elements in the ABAP type concept, internal tables can exist both as data types and as data objects A data type is the abstract description of an internal table, either in a program or centrally in the ABAP Dictionary, that you use to create a concrete data object. The data type is also an attribute of an existing data object.

<b>Internal Tables as Data Types</b>

Internal tables and structures are the two structured data types in ABAP. The data type of an internal table is fully specified by its line type, key, and table type.

<b>Line type</b>

The line type of an internal table can be any data type. The data type of an internal table is normally a structure. Each component of the structure is a column in the internal table. However, the line type may also be elementary or another internal table.

<b>Key</b>

The key identifies table rows. There are two kinds of key for internal tables - the standard key and a user-defined key. You can specify whether the key should be UNIQUE or NON-UNIQUE. Internal tables with a unique key cannot contain duplicate entries. The uniqueness depends on the table access method.

If a table has a structured line type, its default key consists of all of its non-numerical columns that are not references or themselves internal tables. If a table has an elementary line type, the default key is the entire line. The default key of an internal table whose line type is an internal table, the default key is empty.

The user-defined key can contain any columns of the internal table that are not references or themselves internal tables. Internal tables with a user-defined key are called key tables. When you define the key, the sequence of the key fields is significant. You should remember this, for example, if you intend to sort the table according to the key.

<b>

Table type</b>

The table type determines how ABAP will access individual table entries. Internal tables can be divided into three types:

<u>Standard tables</u> have an internal linear index. From a particular size upwards, the indexes of internal tables are administered as trees. In this case, the index administration overhead increases in logarithmic and not linear relation to the number of lines. The system can access records either by using the table index or the key. The response time for key access is proportional to the number of entries in the table. The key of a standard table is always non-unique. You cannot specify a unique key. This means that standard tables can always be filled very quickly, since the system does not have to check whether there are already existing entries.

<u>

Sorted tables</u> are always saved sorted by the key. They also have an internal index. The system can access records either by using the table index or the key. The response time for key access is logarithmically proportional to the number of table entries, since the system uses a binary search. The key of a sorted table can be either unique or non-unique. When you define the table, you must specify whether the key is to be unique or not. Standard tables and sorted tables are known generically as index tables.

<u>

Hashed tables</u> have no linear index. You can only access a hashed table using its key. The response time is independent of the number of table entries, and is constant, since the system access the table entries using a hash algorithm. The key of a hashed table must be unique. When you define the table, you must specify the key as UNIQUE.

<b>

Generic Internal Tables</b>

Unlike other local data types in programs, you do not have to specify the data type of an internal table fully. Instead, you can specify a generic construction, that is, the key or key and line type of an internal table data type may remain unspecified. You can use generic internal tables to specify the types of field symbols and the interface parameters of procedures . You cannot use them to declare data objects.

<b>Internal Tables as Dynamic Data Objects</b>

Data objects that are defined either with the data type of an internal table, or directly as an internal table, are always fully defined in respect of their line type, key and access method. However, the number of lines is not fixed. Thus internal tables are dynamic data objects, since they can contain any number of lines of a particular type. The only restriction on the number of lines an internal table may contain are the limits of your system installation. The maximum memory that can be occupied by an internal table (including its internal administration) is 2 gigabytes. A more realistic figure is up to 500 megabytes. An additional restriction for hashed tables is that they may not contain more than 2 million entries. The line types of internal tables can be any ABAP data types - elementary, structured, or internal tables. The individual lines of an internal table are called table lines or table entries. Each component of a structured line is called a column in the internal table.

<b>

Choosing a Table Type</b>

The table type (and particularly the access method) that you will use depends on how the typical internal table operations will be most frequently executed.

<b>

Standard tables</b>

This is the most appropriate type if you are going to address the individual table entries using the index. Index access is the quickest possible access. You should fill a standard table by appending lines (ABAP APPEND statement), and read, modify and delete entries by specifying the index (INDEX option with the relevant ABAP command). The access time for a standard table increases in a linear relationship with the number of table entries. If you need key access, standard tables are particularly useful if you can fill and process the table in separate steps. For example, you could fill the table by appending entries, and then sort it. If you use the binary search option with key access, the response time is logarithmically proportional to the number of table entries.

<b>Sorted tables</b>

This is the most appropriate type if you need a table which is sorted as you fill it. You fill sorted tables using the INSERT statement. Entries are inserted according to the sort sequence defined through the table key. Any illegal entries are recognized as soon as you try to add them to the table. The response time for key access is logarithmically proportional to the number of table entries, since the system always uses a binary search. Sorted tables are particularly useful for partially sequential processing in a LOOP if you specify the beginning of the table key in the WHERE condition.

<b>

Hashed tables</b>

This is the most appropriate type for any table where the main operation is key access. You cannot access a hashed table using its index. The response time for key access remains constant, regardless of the number of table entries. Like database tables, hashed tables always have a unique key. Hashed tables are useful if you want to construct and use an internal table which resembles a database table or for processing large amounts of data.

regards,

sai ramesh

6 REPLIES 6

Former Member

Former Member
0 Kudos
101

Hi..,

<b>

Internal tables </b>

Internal tables provide a means of taking data from a fixed structure and storing it in working memory in ABAP. The data is stored line by line in memory, and each line has the same structure. In ABAP, internal tables fulfill the function of arrays. Since they are dynamic data objects, they save the programmer the task of dynamic memory management in his or her programs. You should use internal tables whenever you want to process a dataset with a fixed structure within a program. A particularly important use for internal tables is for storing and formatting data from a database table within a program. They are also a good way of including very complicated data structures in an ABAP program.

Like all elements in the ABAP type concept, internal tables can exist both as data types and as data objects A data type is the abstract description of an internal table, either in a program or centrally in the ABAP Dictionary, that you use to create a concrete data object. The data type is also an attribute of an existing data object.

<b>Internal Tables as Data Types</b>

Internal tables and structures are the two structured data types in ABAP. The data type of an internal table is fully specified by its line type, key, and table type.

<b>Line type</b>

The line type of an internal table can be any data type. The data type of an internal table is normally a structure. Each component of the structure is a column in the internal table. However, the line type may also be elementary or another internal table.

<b>Key</b>

The key identifies table rows. There are two kinds of key for internal tables - the standard key and a user-defined key. You can specify whether the key should be UNIQUE or NON-UNIQUE. Internal tables with a unique key cannot contain duplicate entries. The uniqueness depends on the table access method.

If a table has a structured line type, its default key consists of all of its non-numerical columns that are not references or themselves internal tables. If a table has an elementary line type, the default key is the entire line. The default key of an internal table whose line type is an internal table, the default key is empty.

The user-defined key can contain any columns of the internal table that are not references or themselves internal tables. Internal tables with a user-defined key are called key tables. When you define the key, the sequence of the key fields is significant. You should remember this, for example, if you intend to sort the table according to the key.

<b>

Table type</b>

The table type determines how ABAP will access individual table entries. Internal tables can be divided into three types:

<u>Standard tables</u> have an internal linear index. From a particular size upwards, the indexes of internal tables are administered as trees. In this case, the index administration overhead increases in logarithmic and not linear relation to the number of lines. The system can access records either by using the table index or the key. The response time for key access is proportional to the number of entries in the table. The key of a standard table is always non-unique. You cannot specify a unique key. This means that standard tables can always be filled very quickly, since the system does not have to check whether there are already existing entries.

<u>

Sorted tables</u> are always saved sorted by the key. They also have an internal index. The system can access records either by using the table index or the key. The response time for key access is logarithmically proportional to the number of table entries, since the system uses a binary search. The key of a sorted table can be either unique or non-unique. When you define the table, you must specify whether the key is to be unique or not. Standard tables and sorted tables are known generically as index tables.

<u>

Hashed tables</u> have no linear index. You can only access a hashed table using its key. The response time is independent of the number of table entries, and is constant, since the system access the table entries using a hash algorithm. The key of a hashed table must be unique. When you define the table, you must specify the key as UNIQUE.

<b>

Generic Internal Tables</b>

Unlike other local data types in programs, you do not have to specify the data type of an internal table fully. Instead, you can specify a generic construction, that is, the key or key and line type of an internal table data type may remain unspecified. You can use generic internal tables to specify the types of field symbols and the interface parameters of procedures . You cannot use them to declare data objects.

<b>Internal Tables as Dynamic Data Objects</b>

Data objects that are defined either with the data type of an internal table, or directly as an internal table, are always fully defined in respect of their line type, key and access method. However, the number of lines is not fixed. Thus internal tables are dynamic data objects, since they can contain any number of lines of a particular type. The only restriction on the number of lines an internal table may contain are the limits of your system installation. The maximum memory that can be occupied by an internal table (including its internal administration) is 2 gigabytes. A more realistic figure is up to 500 megabytes. An additional restriction for hashed tables is that they may not contain more than 2 million entries. The line types of internal tables can be any ABAP data types - elementary, structured, or internal tables. The individual lines of an internal table are called table lines or table entries. Each component of a structured line is called a column in the internal table.

<b>

Choosing a Table Type</b>

The table type (and particularly the access method) that you will use depends on how the typical internal table operations will be most frequently executed.

<b>

Standard tables</b>

This is the most appropriate type if you are going to address the individual table entries using the index. Index access is the quickest possible access. You should fill a standard table by appending lines (ABAP APPEND statement), and read, modify and delete entries by specifying the index (INDEX option with the relevant ABAP command). The access time for a standard table increases in a linear relationship with the number of table entries. If you need key access, standard tables are particularly useful if you can fill and process the table in separate steps. For example, you could fill the table by appending entries, and then sort it. If you use the binary search option with key access, the response time is logarithmically proportional to the number of table entries.

<b>Sorted tables</b>

This is the most appropriate type if you need a table which is sorted as you fill it. You fill sorted tables using the INSERT statement. Entries are inserted according to the sort sequence defined through the table key. Any illegal entries are recognized as soon as you try to add them to the table. The response time for key access is logarithmically proportional to the number of table entries, since the system always uses a binary search. Sorted tables are particularly useful for partially sequential processing in a LOOP if you specify the beginning of the table key in the WHERE condition.

<b>

Hashed tables</b>

This is the most appropriate type for any table where the main operation is key access. You cannot access a hashed table using its index. The response time for key access remains constant, regardless of the number of table entries. Like database tables, hashed tables always have a unique key. Hashed tables are useful if you want to construct and use an internal table which resembles a database table or for processing large amounts of data.

regards,

sai ramesh

Former Member
0 Kudos
100

Hi,

An e.g. as follows:

type: begin of g_ty_itab,

mblnr type mkpf-mblnr,

budat type mkpf-budat,

end of g_ty_itab.

data: g_itab type standard table of g_ty_itab occurs 0 with header line.

select mblnr budat from mkpf where... come condition .

This will fetch data into itab, now you can process data.

For theory refer abive replies.

hope this iwll help you

Former Member
0 Kudos
100

Hi,

<b>Internal table:</b>

1. Internal table are data objects that allow u to retain several data records with same structure in the memory.

2. The no of data records is unlimited for an IT.

3. The ABAP runtimke system dynamically manages the length of ITs.

4. This eleminates the work concerning working memory management.

5. The individual data records in an IT are knowns as table lines or table entries.

6. The individual components in a line are referred to as columns of IT.

7.The linetype of IT can be any ABAP datatype , elementary or structured or it can be any other IT.

<b>USAGE:</b>

1. Temp storing data for data base tables for future processing.

2.Structuring and formatting data for output.

<b>

Accesing single records using IT.:</b>

1. APPEND WA TO IT.

2.INSERT WA INTO TABLE IT <CONDITION>

3.READ TABLE IT INTO WA <CONDITION>

4.MODIFY TABLE IT INTO WA <CONDITION>

5.DELETE IT<CONDITION>

Regards ,

Ginni.

Reward if helpful.

Former Member
0 Kudos
100

Hi Chandra,

See these links.... Regarding creation and usage of internal tables.

<a href="/people/rich.heilman2/blog/2005/07/27/dynamic-internal-tables-and-structures--abap:///people/rich.heilman2/blog/2005/07/27/dynamic-internal-tables-and-structures--abap

<a href="http://help.sap.com/saphelp_nw04/helpdata/en/fc/eb3660358411d1829f0000e829fbfe/frameset.htm">http://help.sap.com/saphelp_nw04/helpdata/en/fc/eb3660358411d1829f0000e829fbfe/frameset.htm</a>

hope it helps .....

Regards

Gaurav.

  • Reward points if helpful...

Former Member
0 Kudos
100

Hi,

Check the following link:

http://www.sapbrain.com

Regards,

Bhaskar